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LaPlace Transforms in Design and Analysis of Circuits© 

Part 5 

by Tom Bertenshaw 

 

Active Circuit Design and Analysis 

 

A Generic Device 

 

For the present we will restrict active circuits to be designed around a class of amplifiers 

and filters implemented using Operational Amplifiers (OpAmps) for two reasons:  a) they 

possess a very high input impedance (an FET input), and b) their input circuitry contains 

a differential amplifier that, when coupled with external feedback, drives the difference 

between its two inputs to be zero.  There are certainly other attributes to OpAmps, but for 

now we will use just these two in developing an ensemble of basic building block 

circuits.  We will assume the gain-bandwidth product, source and sink currents, slew rate, 

etc. of the OpAmp are sufficient for our purposes.  In other words, we are leaving the 

study of OpAmps themselves to another course. 

 

Further, since the necessary DC power circuitry seldom impacts the response of active 

amplifiers and filters beyond setting upper and lower bounds on voltage excursions, we 

will also forgo those considerations in this module.  Suffice it to say that we will work 

with a generic device limited to excursions of V15 .  If other values are necessary at any 

point, they will be identified. 

 

At this juncture, just keep in mind the salient feature of very high input impedance
1
; so 

high that when compared to external circuitry current flow values, any current flow into 

the OpAmp can be ignored (nano amps). This is another of those For-All-Practical-

Purposes events).  Also, keep in mind that external feedback causes the difference in 

input values to be driven to zero (there will always be external feedback as the open loop 

gain of an OpAmp is at, or over, a factor of 5
10 ).  So, the characteristics to keep in mind 

are a) no input current; and b) input A is driven to be the same voltage potential as input 

B.   

 

Vout

A

B

 
 

The OpAmp is basically a voltage driven voltage device, and gains are usually taken to 

mean voltage gain.  The OpAmp will sink and source current to the external circuitry 

however, and the manufacturer’s data sheet for the particular device under consideration 

will detail those and all other relevant parameters necessary to successfully use the 

device.   

                                                 
1
 a few megohms, or less, for PN junction devices to tens or even hundreds of megohms for FET's 
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Our generic OpAmp looks like (schematically): 

 

Circuit #1 

Vout

Inverting 

Input

Noninverting 

Input
 

 

When a positive going signal is applied to the inverting input it appears at the output as a 

negative going signal, i.e., it is inverted.  When a positive going signal is applied to the 

non-inverting input, it appears at the output as positive going signal, i.e., its polarity is 

preserved.  Because of transit times there will be a small phase shift in the output, but that 

effect is also assumed to be trivial for our purposes. 

 

Basic Amplifiers 

 

Inverting Amplifier 

 

 

Circuit #2 

 

Ri

Ro

A

i2

i1

Pt. A

Vin
Vout

 
Point A is at the same potential as the non-inverting input; it is a virtual ground at zero 

volts potential (in actual design practice there is a small output offset caused by a trivial 

input current, but FAPP (For All Practical Purposes
2
) the potential is caused to be zero 

through a DC offset input (not shown) on the OpAmp). 

 

Since no current flows into the OpAmp, 
21

ii  , using that fact: 

 

o

out

i

in

R

V

R

V 


 00
 

 

Re-arranging: 

 

                                                 
2
 John S. Bell, 1928-1990, Physicist Extraordinaire 
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i

o

in

out

R

R

V

V
  

 

Since 180

i

o

i

o

R

R

R

R
, the minus sign simply means that there is a phase inversion. 

 

For example: 

 

A

Vin
Vout

10

1

 
 

Assume  tV
in

5sin , then the transform is: 

 

 tV
out

5sin10  or 
25

50
)(

2





s
sV

out
 

 

For convenience: 

 

A

Vin
Vout

10

1

 
 

may be represented by the shorthand schematic: 

 

-10

 
 

The second symbol is understood to be identical to the first as far as circuit behavior in 

all parameters is concerned.  It is merely shorthand.  Bear in mind that the first, or upper, 

schematic symbol is also a shorthand version of the detailed engineering drawing used 

for production.  Those details will not be addressed in this series of modules, but are 

reserved for a course dealing in OpAmp fundamentals. 
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An example of use: 

 

 

Low Pass Circuit 

 

-10

A

 
 

For the above circuit, assume RC=.1, and bear in mind that the minus sign represents a 

180
o
 phase change at the output, but the absolute value of the amplification is 10.  Then, 

the transfer function is: 

10

180100






sV

V

in

out  

 

and the plotting equations are: 

 

 

 

 


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Let's extend this exercise to include a driver of sin(100t).  Than the transfer function is: 

 

  
  

2242
100

7.95100995.

10

1809.

1010

10000
)(
















ssss
sV

o

out
 

 

Because it was known that the output phase with respect to the input varied between -180 

and -270 (+90) minus what was chosen as the operator on the angle.  Be careful when 

using arctan in your calculator or software program; some devices only return answers 

for quadrants I & IV and its left to you to keep track of the quadrant you are in.  

Question:  Why in the above example is the output magnitude less than 10? 

 

The Bode plot predicts an output of 1*input @ -265
o
 for an input at 100 rads/s.  That 

prediction closely approximates the calculated result.  There is a small amount of error in 

the calculations for both the plots and the calculated result due to round off (which is an 

arbitrary choice). 

 

Completing the analysis for the above circuit, using a FAPP approach: 

 
to

out
ettV

10
9.)264100sin()(


  

 

Non-inverting Amplifier 

 

The non-inverting amplifier schematic (non-detailed) looks like: 
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A

Rf

Ri

Pt. A

Vin

Vout

 
 

The voltage at point A is: 

 

out

fi

i

APt
V

RR

R
V


















.
 

 

But the voltage at point A must also equal 
in

V  because of the external feedback network 

of 
fi

RR & , so re-arranging: 

 

i

f

in

out

R

R

V

V
 1  

 

Its shorthand version is: 

 

+X

 
 

where X is the numerical value of the gain.  So, an amplifier with a gain of 10 would look 

like: 
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A

9

1

Vin

Vout

+10

 
 

A note of caution is warranted here.  In these modules values are chosen to illustrate a 

point. In practice resistances of 1  9&  may not be practical because of current draw 

and I
2
R heating in the OpAmp; but it should be clear that Rf must be 9X the value of Ri to 

achieve a gain of +10.  Choose Ri and Rf with a view to limiting the current draw from 

the OpAmp; 100 & 900 ohms would limit the current draw to 15ma when the supply 

is V15 . 

 

Repeating the exercise for the inverting OpAmp, but as a non-inverting amplifier with 

RC=.1: 

 

+10

A

 
 

The transfer function is: 

 

10

100




sV

V

in

out  

 

The plotting equations unsurprisingly are: 

 



























2

10
1log20)10log(20


Magnitude  

and 
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











10
tan0

1 
Phase  

 

The magnitude plot is identical to the plot for the -10 voltage gain lo-pass. 
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But the phase plot has different values on the Y axis. 
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This time, we will drive the system with sin(10t).  The transfer function is now: 

 

 

 2222
10

4510)07.7(

)10(

1.

)10)(10(

1000












ssss
V

o

out
 

 

The steady state amplitude of 7.07 is nicely consistent as the -3db point is .707 of max. 

Since max is 10 in this case, our answer checks. 
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The net result of combining a voltage gain amplifier with a lo-pass filter is merely to 

change the operating amplitude from a 0db floor.  Of course an attenuator will also 

function in a similar fashion.  Notice that in the impulse response transfer function the 

amplifier affects the magnitude of N(s) and does nothing to D(s).  Ideally that is what we 

are after; but in practice the OpAmp will not be ignored and it will impress its gain-

bandwidth product (GBW) on the output.  We generally ignore that troublesome fact in 

pedagogic treatises as the assumption is that the GBW is many times the bandwidth 

needed.  Sadly, in real life as we deal with frequencies tending into the microwave 

region, consideration of the actual operating parameters of the OpAmp cannot be ignored, 

and models such as S parameters become convenient.  But, that tale is left for another 

time.  For now assume the GBW of the OpAmp is sufficient to pass undiminished any 

signal within the bandwidth of our pedagogic interest. 

 

An attenuator with a gain of 1.  looks like: 

 

10

1

A

Vin
Vout

 
 

This attenuator is preferred over a simple voltage divider as any circuitry to the right of 

Vout is invisible to the driver (Vin).  These are great devices for isolating one circuit from 

another and bypassing the loading problem. 

 

The Summer 

 

The summer is a utility workhorse circuit.  Its function is to sum N inputs into a single 

output.  Simultaneously with summing, this circuit can be used to apply tailored gains to 

each of its N inputs.  Its schematic looks like: 

 

 

Vout

A

V1

Vk

Vn

Rf

Rk

Rn

R1

 
 

There are some rules to be observed when using a summer; it is required to operate in its 

linear region of amplification so that superposition applies.  Non-linear operation of any 

input destroys information as the output is forced to a voltage rail (i.e., DC power supply 
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voltage); voltage rail outputs can not distinguish between input variations, i.e., input 

information is lost as the sum of input excursions causes a collision with the rail.  

Secondly, the input to the inverting input must be a virtual ground; this is accomplished 

by causing the non-inverting input to be at 0 volts potential (you will know that it is 

adjusted correctly if all inputs are grounded and 0
out

V ). 

 

Beginning the analysis: 

 

1

1

1
)( V

R

R
VV

f

out
  

: 

: 

k

f

k

kout
V

R

R
VV )(  

: 

: 

: 

n

f

n

nout
V

R

R
VV )(  

 

Summing them all: 

 
















n

f

n

k

f

k

f

out
V

R

R
V

R

R
V

R

R
V .........................

1

1  

 

Bear in mind that it is prudent to require 
out

V  to maintain a small potential below the 

positive rail and a small amount above the negative rail as a margin of safety; usually 1v 

is sufficient. 

 

The shorthand symbol for a summer is: 

 

v1

v2

vn

voutΣ

 
 

The Buffer 

 

We have one more elementary circuit to consider before we begin the discussion of the 

more complex basic circuits; and that elementary circuit is the buffer.  Its schematic is: 
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VoutVin

 
The transfer function is: 

 

0
outin

VV  or re-arranging 
inout

VV   

 

And for this one: 

 

-

+

Vin
Vout

 
 

0
outin

VV  or 
inout

VV   

 

The utility of this circuit is two fold; a) it has a sufficiently high input impedance that it 

does not load the circuit providing 
in

V  and b) its output impedance is very low to the 

circuit that the buffer is providing 
out

V  to; i.e., it looks like an ordinary low impedance 

voltage supply.  It provides major design advantages in that it isolates one circuit stage 

from another, minimizing loading effects and maximizing voltage transfer from stage to 

stage.  Its shorthand schematic is: 

 

 

±1

 
An illustration of use: 

 

1

A

-10 Ckt. 2

 
 

The buffer prevents input impedance of Ckt. 2 from appearing in parallel with the lo-pass 

filter.  This arrangement preserves the filter's transfer function by not allowing the input 

impedance of Ckt. 2 to alter the impedance and/or voltage division ratio of the filter.  For 

example, if the buffer were not there, then the filter impedance is altered in this way: 
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-10

Zin

Ckt. 2

A

 
 

The lo-pass transfer function with the buffer is: 

 

RC
s

RC

V

V

in

out

1

1
10













  

 

Without the buffer the transfer function becomes: 

 

RCCZ
s

RC

V

V

in

in

out

11

1
10













  

 

Clearly the break frequency has shifted and the shift is dependent on Zin. But if 
in

Z  is 

complex, then in turn, it is a function of frequency; this is a nasty loading problem.  Use a 

buffer to obviate that un-necessary complication.  Task:  Derive the above equation by 

considering that the current through the resistor must equal the current through the 

parallel combination of
sC

Z
in

1& . 

 

One last point: with the buffer in the circuit, the parallel combination of 
in

Z  (of the 

buffer) and the capacitor is: 

 

Cin

Cin

p
XZ

XZ
Z


  

 

Because
cin

XZ  , 
Cp

XZ   and the loading problem vanishes towards zero.  Older 

engineers can recognize the similes between the solid state buffer and a vacuum tube 

triode amp with unity gain. 
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Mathematical Function Circuits 

 

The Integrator 

 

Consider the following circuit: 

 

A

1/sC

Ri

-1
Vin

Vo

 
 

The transfer function is: 

 

ssRCV

V

in

o



1

 

 

when 
in

V  is a unit step, then: 

 

2
s

V
o


  

 

The time response, as a function of  is: 

 

ttV
o

)(  

 

Time Response

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

M
a
g

n
it

u
d

e

a=.5 a=1 a=.1
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This circuit presents a linear voltage rise as a function of time; as such, it has utility as a 

timer that uses voltage comparisons as a trigger, or in any circuit that requires a linear 

rise with respect to time.  As a designer, you have control over the slope via choosing the 

combination of RC that suits your purpose.   

 

So, when the input is a unit step, this circuit integrates. But what if the input is a 

sinusoid?  In that case: 

 

  22220

90

o

oo

o

o

ssss

a
V






















  

 

 )90sin()()(
o

o

o

o
ttutV  




 

which is essentially a sinusoid riding a DC potential of 
o




.  For the sake of illustration, 

assume the usual RC=.1, and that 10
o

 . 

 

The plotting equation: 

 



























2

10
1log20)log(20)100log(20


Magnitude  

 

The Integrator has now become a Lo-Pass filter with a controlled gain. 
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As expected, there is -20db/decade roll-off until 10 rads/s. At that point the roll-off 

increases to -40 dc/dec.  Since we have established that with a step input this circuit 
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integrates, we should expect a gain in very low frequencies, and indeed there is a 

significant gain. 
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Changing the Break Point:  Integrator/Lo-Pass with Gain 

 

 

Consider this circuit: 

 

1/sC

Ri

-1
Vin

Vo

A

Rf

-1

 
 

Step one is to develop a suitable expression for the parallel combination of 
f

R
sC

&
1

. 

 

CR
s

C

sCR

R

sC
R

sC

R

f

f

f

f

f

1

1

11









   

 

The buffer may or may not be needed in an actual circuit; it is included here merely to 

preserve polarity in the example. 
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We will keep this result in mind as it comes to play a frequent role in active circuits. In 

general then, the impedance when CR  (read "R is in parallel with C") is: 

 

xx

x

CR
s

C

1

1



 

 

then it follows that the complete transfer function becomes: 

 

ff

fi

i

o

CR
s

CR

V

V

1

1



  

 

Notice that now the break frequency and the gain (as represented by N(s)) are now 

decoupled and dependent upon two separate circuit parameters:
fi

RR & . Also that 

when 0 , gain has devolved back to an expected 
i

f

R

R
, so the plotting equation is:  

 

















































2

1log20log20

oi

f

R

R
Magnitude




 

 

where 
CR

f

o

1
 .  And, of course: 


















o

Phase


1
tan0  

 

Assuming 1.CR
f

, and that 10

i

f

R

R
, then: 

 
















100
1log20)10log(20

2


Magnitude  
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Computed Single Pole Lo-Pass
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The above has the exact same response of the previous lo-pass with a gain of 10 circuit, 

but with fewer components.  Fewer components equal higher reliability and longer 

MTBF
3
, resulting in a more compact circuit.  While this case is trivial, it serves to open 

the door to the design philosophy of component count minimization. 

 

As an exercise, assume that a gain of 15 is needed and the circuit is to have a break 

frequency at 100 rads/s.  Further assume that a 1μf capacitor is chosen.  Then since 

ωo=100, the time constant is .01; further as C=1X10
-6

, Rf must equal 10KΩ.  Gain is 15 

which clamps Ri to 667Ω - a non-standard value. 

Vin

1μf

-1 Vo

A

-1

1K

2K

10K

 
 

At this point the designer has the option of accepting a non-standard value for Ri  or to 

find some standard component mix of values for capacitance and resistance that will 

simultaneously satisfy RfCf=.01 and Rf=15*Ri  - it all depends upon what is acceptable 

for the production line.  A 2KΩ resistor in parallel with a 1KΩ would do the job; but it 

adds to the component count.  A standard value of 680Ω could be used, but the gain will 

not equal 15.  There seems to be no optimum solution; just choices that offer different 

problematic aspects. Question: How could a change of requirement to a -40db/dec roll-

                                                 
3
  Mean Time Between Failures 
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off be handled? Again, in the above circuit, the buffer is included only to preserve 

polarity in the example; in practice it may or may not be needed. 

 

A Mythical Differentiator 

 

This circuit deserves some serious discussion concerning the convenience of schematic 

representation versus the realities of the component needs.  The conventional schematic 

is: 

 

V1
Vout

Rf

Ci

A

 
 

First let's consider the transfer function: 

 

if

i

f

in

out CsR

sC

R

V

V





1
 

or, re-written: 

 

  
inifout

sVCRV   

or, more compactly: 

 

inout
sVKV

1
  

 

Which says Vout equals the derivative of Vin scaled by the factor RfCi.  Clearly this is a 

very useful circuit.  We now have a method of obtaining the derivative of an input, and 

we retain control over the scale factor.  Great!  Or is it? 

 

Consider the case when the op-amp has been properly offset such that 
 VV =0, then 

Vout also equals zero.  The junction of the capacitor and Rf is now a virtual ground.  

While that point is at a virtual zero volts potential, you cannot draw current into the op-

amp negative input from this virtual ground as no DC current can flow through the 

capacitor.  Bear in mind that in a real circuit, although the bias current is trivial, it is still 

needed (biases the input gate of an FET).  A physical ground is needed.  As there is no 

DC path to ground from the 
V  input, proper internal bias cannot be obtained, i.e., the 

circuit cannot be depended on to work as intended.  See appendix C for one work-around 

for this problem. 
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Differentiator and Gain 

 

Consider the circuit below: 

A

Vin
Vout

Ri

Ci Rf

 
 

The impedance of the input: 

 

ii

i

ii

i

i

i

i

i

CR
s

C
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is the transfer function: 
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





























2

2

1log20log20

oi

f

R

R
Magnitude




 

 


















o

Phase


1
tan0  

 

The re-arranged form of the transfer function: 
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is useful in developing a circuit that differentiates.  Notice that when s=0, gain is 
i

f

R

R
, 

the common fixed gain inverting amplifier.   
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For the sake of an example, let ωo be 100 and a DC (ω=0) gain of 10. 
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This response is nothing new, but you as the designer have complete control over the gain 

and break frequency. More importantly as we will shortly see, this circuit, as all the 

others, is merely a building block. Eventually we will combine these circuits into a 

transfer function that fits the needs of a design criterion. 
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The last circuit we will consider in this module is a combination of the previous circuit 

and the Integrator/Lo-Pass w/Gain circuit.   
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Integrator/Lo-Pass w/Gain circuit 

 

The following circuit has interesting and very useful properties.  Being a combination of 

the last two circuits discussed, you might expect that its performance would be a 

combination of the performances of the previous two. Indeed it is. 
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For all practical purposes this circuit reduces to: 
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Notice that when 0s  the gain reverts to the expected 
Ri

Rf
 , and that when 
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 also as expected.  This yields: 
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Clearly if
fi

  , it is a hi-pass; if 
if

  , it is a lo-pass.  If we assume that 
fi

CC   we 

have the ability to create either a lo- or a hi-pass by merely choosing resistor values 

appropriate to the inequalities needed.  For example, let the capacitors equal 1μf.  If we 

set the zero break frequency at 1 rad/s then the resistor value is 1x10
6
 Ω. Then if we set 

the pole break frequency at 10 rads/s, the resistor is 1x10
5
 Ω; we now have a hi-pass.  

Conversely if we set the pole frequency to 100 rads/s and the zero break frequency to 

1000 rads/s with resistor values of 1x10
4
 and 1x10

3
 Ω, we have lo-pass.  Notice that the 

gain is for both plateaus and it does not perpetually increase or decrease. 
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Were we to cascade two of these circuits in series and choosing the zero frequencies to be 

1 & 1000 rads/s and the pole frequencies to 10 & 100 rads/s, we get: 
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Recognize that the slopes and amplitudes can be controlled and adjusted as necessary by 

cascading additional modules of the same circuit. Footprint on the circuit board is 

virtually unaffected by cascading when ASIC's are used.  Were we to reverse the order of 

the poles and zeros, i.e., poles at 1 and 1000 rads/s and zeros at 10 and 100 rads/s, we 

obtain a "notch" filter. 
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It is for certain that the circuit would have greater utility if the slope were on the order of 

80db/dec or greater.  In such a case the bandpass filter would look like this: 
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Notice what happens to bandwidth as the order of the filter is increased from 1 to 4; the 

bandwidth is decreased by approximately 63%.  The salient points are that as the order of 

the filter is increased, and discrimination and selectivity are enhanced. 

 

The greatest utility is that the circuit whose Bode transfer function is as immediately 

above, occurs when the base line is moved from 0db to  -76db.  Its utility as a noise 
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suppression circuit then becomes self-evident.  Ponder:  What circuit would you use to 

move the base line to 76 db (for simplicity use -80db)?   

 

Other circuits will be developed as needed in subsequent modules as needed. 
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Appendix A 

 

A Look at the Op-Amp Output 

 

 

There is a mix of error voltages that occur in practice that are not considered in the 

elementary general development of op-amp circuit design.  These voltages occur in the 

output independently of the driver.  The op-amp is a physical device consisting of 

transistorized circuitry embedded in a substrate (a "chip") and is often implemented using 

field effect transistors as the device of choice (in the slide rule days we used vacuum tube 

triodes).  There are solid considerations for choosing FET's, one of which is that the input 

impedance is extremely high, and bias currents are miniscule.  Nevertheless, there are 

bias considerations that are inescapable in using the physical device.   

 

As a rule, a DC path to ground must be provided for each input, even if it is a sneak path 

such as the output stage of the driver.  Bizarre effects will occur without those paths, 

often rendering the device unresponsive or unpredictable. That being the case, the 

assumption made during development that no current flows into the op-amp inputs is not 

precisely correct.  There is a current, often it is in the range of 10
-6

 of that of the external 

circuit current. So while being imprecise, we can usually ignore the input current.  But 

precision requires that the designer be aware of it and its effects on the gross output. 

Vout

V1

V2

 
 

The input stage of the op-amp produces an output that is proportional to V2-V1. That 

stage is followed by conditioning and amplifying stages such that Vout=K1(V2-V1),  where 

K1 is the value of the open loop gain; a constant on the order of 10
5
 or greater. The 

expression Vout=K1(V2-V1) represents the output voltage due to the open loop gain of the 

op-amp - it will be clamped to a rail. 

 

Consider the following: 
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where V2 is at some small potential removed from actual circuit ground caused by bias 

current, i.e. V2≠ 0.  By extension then
2

VV
a
 .  If the circuit is linear (and it better be if it 

is to be useful as other than a binary device), then: 
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doing some re-arranging: 
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To differentiate between the various values of Vout, assign Vo1 to the open-loop gain and 

Vout to the closed loop gain.  So: 

 

Vo1=K1(V2-V1)=K1Va 

 

where K1 is an intrinsically high value on the order of 10
5
 or greater. 
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2
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V01 can be forced to closely approach 0 in a couple of ways.  One is to supply the op-

amp's offset input (if it has one) a voltage sufficient to null out V01.  Another is to use a 

bias resistor at the positive input equal to the parallel combination of Rf and Ri. 

 



28 

V1
Vout

Rf

Ri

A

RfRi/(Rf+Ri)

 
 

In the absence of the driver, the bias currents to each input are then the same (or nearly 

so).   

 

When V01 is forced to be 0 then by Vo1=K1Va, Va must be zero because K1 is not, leaving: 
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From the defining schematic above, the magnitude of V2 (the voltage appearing at the 

junction of Ri & Rf) is: 
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where i
+
 is the input current to the non-inverting input.  That current is the bias current 

into the gate of an FET; generally in the nano amp range which puts V2 about in the 10
-4

 

volt range.  So FAPP
4
 comes galloping to our salvation again (assumes that V2 is trivial 

or nearly 0 for practical purposes) wherein the model assumes a zero volt potential at the 

positive input; allowing the claim that: 
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In any event, the expression: 
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is a close approximation of the actual gain, and as a working relationship, is sufficient for 

almost all uses.  But as in the Quantum world, there are little "ghosties" hanging around 

that the designer must be aware of and account for when precision is necessary. 

                                                 
4
 For All Practical Purposes 
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Appendix B 

 

Gain Bandwidth Product 

 

 

The op-amp has internal poles that determine its response as a function of gain and 

frequency.  Fortunately, the response is linear or nearly so, and follows an algebraic 

relationship. 

 

As a rule, the open loop gain of an op-amp is very high; on the order of 10
5
 or greater.  

However there is a dominate low frequency pole at a very low value; between 2 and 

30Hz.  From that point, the response linearly falls off in a way such that: 

 

gain*bandwidth=constant. 

 

For example if the device has a bandwidth of 10
6
 at a gain of 1, it will have a bandwidth 

of 10
5
 at a gain of 10, a bandwidth of 10

4
 at a gain of 100, and so on.  This device would 

be identified as having a GBW (gain bandwidth product) of 10
6 

(GBW being defined at a 

gain of 1). 
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Appendix C 

 

Differentiator 

 

Recall that this circuit has a transfer function of: 
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Using block diagrams, this transfer function suggests to yield a differentiator: 

 

 

Σ
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-

sK1Vin Vin

 
 

While the component count exceeds that of the circuit consisting of an op-amp, a resistor 

and a capacitor, its dependability to avoid the issue of an ungrounded (DC wise) input is 

assured.  Therefore its ability to deliver a dependable output is assured.  
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Appendix D 

 

Table of Transforms 
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Table 1 
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(*) K is preserved for practical circuit reasons, not for theoretical reasons as K is 

approximately equal to  . 

 

Table 1 is not all inclusive and other pairs will be examined and added when needed.  But 

for beginning analysis purposes, Table 1 is adequate.   

 

It is very important to understand that to be able to transform any )(sF  to an )(tf , )(sF  

must be reduced to one of the forms so far developed.  If it is not in one of these forms, 

for the purposes of this course it cannot be operated on until it is.  Study the right hand 

side forms as they identify the left hand side.   

 

Transforms 12 and 13 are found as follows: 
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Finding transforms 12 and 13 is a straight forward exercise using integration by parts. 
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Appendix E 

 

Convolution and LaPlace Domain Multiplication 

 

 

Consider the following integral: 
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For the sake of illustration, read the above integral this way:  let )(uf  be a transfer 

function in the time domain, and )( utg   be a signal.   

 

Begin by building the signal this way, t
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)( . 
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Now "flip" the signal horizontally, so that as it progresses left-to-right, the leading edge is 

g(0). 
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Now let g(-t) proceed left to right.  Recognize that "u" is a dummy variable of integration 

and that physically tu   for every u and t. Therefore g(t-u) always equals g(0) regardless 

of where it is on the x axis. 

 

Arbitrarily assume the limit on the integration is 8.  At 1.2 tu , g(t-u) would be: 
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At t=2.1, g(t-u)=g(2.1-2.1)=g(0); but when t=2.1 what does g(t-1) look like? Well 

g((2.1-1)-2.1)=g(-1.1).  And if you check the value of g(-1.1) on the graph of g(-t), you 

will see that they agree with the value on the graph on the previous page at t=-1. 

 

Therefore the argument (t-u) is interpreted to mean that the signal is flipped 180
o
 

horizontally, allowing g(0) to be the leading edge of the signal passing through the 

transfer function.  This is the convolution integral and it expresses mathematically the 

physical property that a signal passes through a transfer function as the right-to-left 

mirror image of that seen on an oscilloscope.  Note that it is irrelevant whether we 

consider the signal passing through the transfer function or the transfer function passing 

through the signal; our view has no effect on the outcome. 

 

That being the agreed case, the following pair is defined: 
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where: 

)()()( utgtfth   

 

tying the physical property of passing a signal through some hardware to the LaPlace 

transform of that process. 

 

Suppose )1()()(  tututf  and that )1()()(  tututg , then the transform would be: 
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The time result would be: 
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h(t) is the integral of the area where f(t) intersects g(t-u).  After g(t-u) completely passes 

through f(t),  the results of the integral are: 
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This result agrees with the results of the time domain inversion of f(s)g(s).  You may 

verify that this result is indeed the solution in the time domain by visiting 

http://jhu.edu/signals/convolve/index.html; courtesy of Johns Hopkins University, or by 

obtaining h(t) on the interval 0-2 using the convolution integral. 

 

Reverting to t
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 2)(  and using )1()()(  tututf ; then in the Laplace domain: 
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Taking the inverse transform and plotting: 
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Again, you may verify that this result is indeed the solution in the time domain by 

visiting http://jhu.edu/signals/convolve/index.html; courtesy of Johns Hopkins 

University, or by obtaining h(t) using the convolution integral. 


